

Department of Agriculture Agriculture Research Service

USDA/ARS Bioenergy Research

<u>3 Components</u>

- <u>Feedstock Development</u>: Enable new varieties and hybrids of bioenergy feedstocks with optimal traits
- <u>Sustainable Feedstock Production Systems</u>: Enable new optimal practices and systems that maximize the sustainable yield of high-quality bioenergy feedstocks
- <u>Biorefining</u>: Enable new commercially-preferred biorefining technologies

ents within <u>5 Re</u>	gional Centers	
North-Eastern	West	
East-Central		
on <u>5 promisin</u>	g feedstocks	
woody biomass	corahum	
	ents within <u>5 Re</u> North-Eastern on <u>5 promisin</u>	

2

USDA Regional Feedstock Centers

Overarching objective

Coordinate existing ARS research capacities to accelerate large-scale sustainable biomass production

<u>Approach</u>

- Optimize feedstock supply within existing agricultural and forestry systems
- Coordinate research of laboratories within a Region as one comprehensive program
- Whole-system, life-cycle assessments (e.g., input use efficiency, natural resources management, greenhouse gas emissions)
- Target multi-functional landscapes
- Address economic, environmental and social uncertainties/risks upfront
- Target commercial viability and recruit commercial partners up-front

USDA

USDA Regional Feedstock Centers

A Center – network of existing ARS and FS laboratories

Leverage external resources...

- > NIFA (e.g., CAP program)
- university partners
- other Federal laboratories
- biorefiners & other corporate collaborators
- agricultural producers
- engaged NGOs
- Leverage ARS-wide scientific and technical expertise
 - <u>crop-centric</u> teams (Perennial grasses, Energy cane, Sorghum, Oilseed Crops, Agroforestry)
 - <u>natural resource</u> teams (GRACENet, CEAP, Biophysical/economic modeling)
 - biorefining & co-products teams (Cellulosic ethanol, Pyrolysis, Starchbased ethanol, Biodiesel, Techno-economic analysis)
 - feedstock logistics team

USDA Regional Feedstock Centers

Anticipated Outcomes

Region	Potential Capacity	National Contribution	Number of Facilities	Estimated Investment
(Change)	billion gallons	; %	101	\$ billion
Southeast	10.4	49.8	263	83.3
Central-East	9.1	43.3	226	72.0
Northwest	1.0	4.6	27	8.3
North-Eastern	0.4	2.0	11	3.5
West	0.1	0.3	2	0.5

21 billion gallons 527 new biorefineries \$168 billion capital investment

ARS Bioenergy Research Feedstock Development

• Biological and molecular basis for plant traits

USDA

- Understand molecular basis for key traits (cell-wall structure, growth biomass yield, conversion potential)
- Breeding and evaluation of new germplasm
 - > Improved germplasm & varieties for energy crops

ARS Bioenergy Research Sustainable Feedstock Production Systems

- Region-specific, sustainable practices to maximize feedstock harvest
 - Whole-farm optimization tools to incorporate bioenergy feedstock production into farm operations
- Analytical tools to estimate potential feedstock amounts and the implications of harvest on natural resource base
 - Decision tools for farmers and biorefinery operators
- On-farm utilization of biorefinery coproducts
 - Physical, chemical and biological value of byproducts as soil amendments and nutrients

ARS Bioenergy Research Biorefining Research

Enable new commercially-preferred biorefining technologies

- Biocatalytic (EtOH & BuOH)
 - 1st Gen. starches & sugars
 - > 2nd Gen. *cellulosic*
- Thermochemical
 - Pyrolysis (CHP, advanced biofuels)
- Biodiesel

USDA

> Fuel quality (cold flow, ox. stability)

- Biorefinery co-products/byproducts
 for each biorefining platform
- ✓ Biocatalysis & industrial microbiology
- ✓ Techno-economic analyses
 - identify R&D goals & priorities
- ✓ Early-stage technology transfer plans
- Pilot facilities

Focus Going Forward

- 1. Feedstock-flexible
- 2. Farm-scale
- 3. Coordinate with DOE