

Department of Energy Advanced Research Projects Agency - Energy

Advanced Research Projects Agency – Energy (ARPA-E) is a new Dept. of Energy agency for high-risk, high-impact energy R&D

Academies on April 27.2009

In year one, ARPA-E identified and invested \$366 million in 121 projects across the energy technology spectrum

Focused Program Areas \$207.1 M

Broad Funding Opportunity \$158.4 M

ARPA-E's current bioenergy portfolio places investments in transformative near-to-mid term bioenergy technologies...

Near Term Technologies		
Biomass Technologies		High Yielding, Low Input Energy Crops Trait development to increase biomass yields while decreasing use of nitrogen fertilizers
	DUPOND ®	<u>MacroAlgae Butanol</u> Produce isobutanol from macroalgae, an advantaged, environmentally sustainable feedstock
	Algaeventure systems a Univerture, Inc. company	Scaling and Commercialization of Algae Harvesting Technology Transform economics of algae-based fuels by dramatic energy cost reductions
Pretreatment & Conversion		<u>Catalytic Biocrude Production in a Novel Short-Contact Time Reactor</u> Novel single step catalytic biomass pyrolysis process to maximize carbon conversion efficiency and yield a low oxygen-content biocrude
	<u>Agr</u> ívída	<u>Conditionally Activated Enzymes Expressed in Cellulosic Energy Crops</u> <i>Produce inactive enzymes within plant biomass for conditional</i> <i>activation, and pretreatment cost/impact reduction</i>
Innovative Algae Technologies	ARIZONA STATE UNIVERSITY	<u>Cyanobacteria Designed for Solar-Powered Highly Efficient Production of</u> <u>Biofuels</u> Engineer photosynthetic Synechocystis cyanobacteria to enable highly efficient production and secretion of fatty acids in a continuous culture maintained in stationary phase
	STATE	<u>A Genetically Tractable Microalgae Platform for Advanced Biofuel Production</u> Empower the economic viability, versatility, and sustainability of the algae-based fuels industry via development of a genetically tractable Chlamydomonas microalgal platform
		Shewanella as an Ideal Platform for Producing Hydrocarbon Biofuels Develop a co-culture with photosynthetic cyanobacteria and Shewanella bacteria to produce and continuously harvest hydrocarbons for fuel production

...as well as "Electrofuels", a program area for mid-to-long term solutions to many current biofuel production inefficiencies

"Electrofuels" targets the use of nonphotosynthetic, autotrophic microorganisms for the production of infrastructure compatible biofuels. 13 projects, \$45M ARPA-E, \$56M Total

The Electrofuels program is opening up a new area of research and path to biofuels

Assimilate Reducing Equivalents: other than reduced carbon or products from Photosystems I & II (ex. direct current, H₂, H₂S, etc.)

Pathways for Carbon Fixation: reverse TCA, Calvin- Benson, Wood-Ljungdahl, Hydroxpropionatehydroxybutyrate, or newly designed biochemical pathways

Fuel synthesis: *metabolic engineering to direct carbon flux to fuel products*

Contact ARPA-E Deputy Director of Technology Dr. Eric Toone <u>Eric.Toone"at"hq.doe.gov</u>, or Associates Drs. Chad Haynes <u>Chad.Haynes"at"hq.doe.gov</u> and Brenda Haendler <u>Brenda.Haendler"at"hq.doe.gov</u>