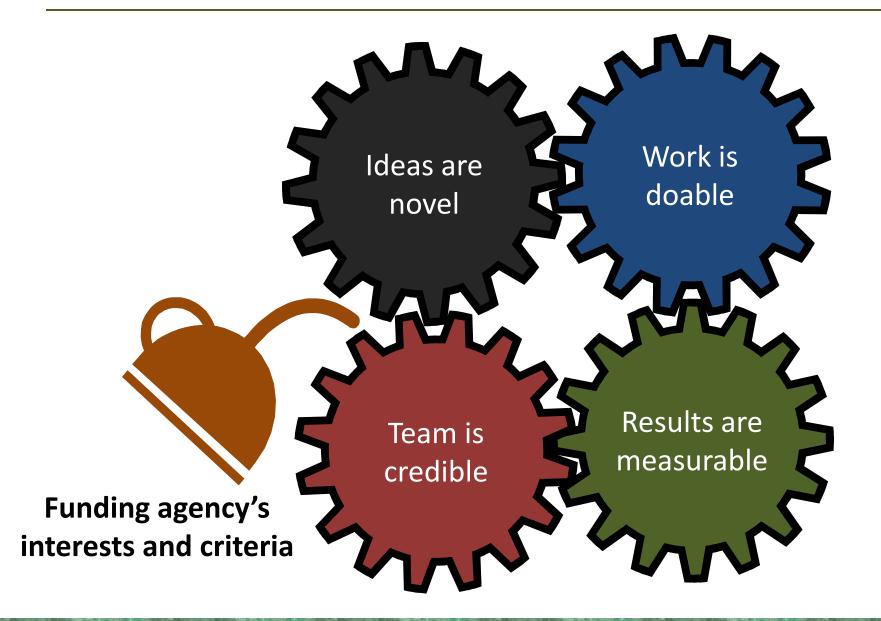
Proposing a Large SCRI Project


Sanjiv Singh CASC Principal Investigator

Marcel Bergerman CASC Project Manager

Background: Robotics Institute, CMU

- Created in 1983
- Largest department at Carnegie Mellon
- ~600 people working on broad range of technologies
- Growing 10-20%/year; doubling in size every 6 years
- \$60M/year research budget
- Institute existed before academic program
- Majority of faculty in "soft money" positions
- Funding from DOD, NSF, NASA, corporations
- Commonly put together large proposals (> \$1M/year)
- Long history of collaboration between researchers, universities, users and corporations

Make up of a successful proposal

Examples of agencies' interests and criteria

- NSF
 - Intellectual merit
 - Social impact
 - Not big on systems
- DARPA
 - Paradigm shifting technology
 - Military relevance
 - Not big on social impact
- NASA
 - Technologies for extreme environments
 - Space relevance
 - Dual use

- USDA SCRI
 - Multi-disciplinary
 - Multi-state
 - Cross-cutting across crops
 - Has significant stakeholder involvement
 - Gets out in the world (e.g. via ag extension)
 - Good chance that the enterprise will grow after USDA funding ends

Challenge of large proposals

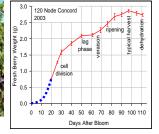
- Scope can be so wide that no single person is a expert in all of the topics, BUT
- Proposal needs to show an integrated approach, can't be a "quilt"
- WHOLE MUST BE GREATER THAN THE SUM OF THE PARTS

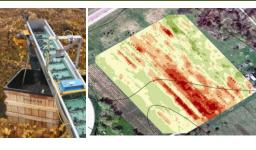
Developing a large SCRI proposal

- Develop good links with industry being served
 - Months/years before CFP is issued
- Jointly define problems to be solved and prioritize them
 - Start with open problems that the stakeholders want solved
 - Not what can be done with your favorite approach
- Identify core team
 - Go for the "dream" team, not your friends team
 - Best partners are complementary, not your competition
 - Include plant scientists, engineers, extension personnel and companies
 - Recruit secondary players only as needed
 - Recruit strong advisory panel
- Identify thematic areas and themes
 - Each theme should have a clearly identified leader

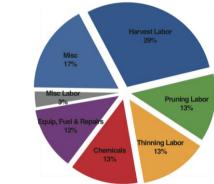
Developing a large SCRI proposal (cont.)

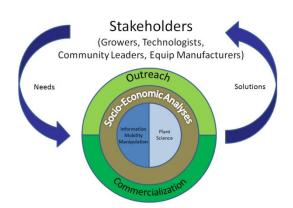
- Find matching funds
 - Growers, industry consortia and equipment manufacturers
 - Make sure to verify match eligibility with USDA, especially for equipment
 - Match commitments must be firm
 - Always "overmatch" as some items may not be accepted at award time
- Develop storyboards for each theme
 - Circulated and revised frequently among/by team members
 - Don't write any text before storyboard is complete
- Core team produces proposals and carries it to finish line

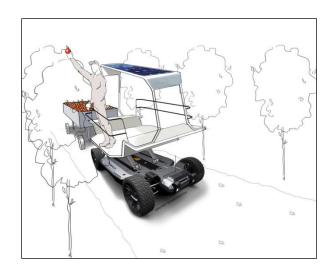

Storyboard structure


- Problem
 - Must be agnostic to solution
 - No jargon—something a grower would say
- Benefits
 - If you solve the problem, who would benefit and how?
 - Focus on the grower (improved quality, increased yield, reduced labor, lower environmental footprint, etc.)
- Approach
 - Key ideas: stress novelty of ideas
 - Rationale: why the ideas are worth considering
- Team Expertise
 - List partners, especially outreach and commercialization
- Schedule over four years
 - Activities, milestones, success criteria
 - This turns into Statement of Work
- Use compelling graphics

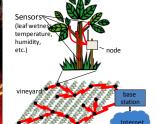
A picture is worth a thousand words!

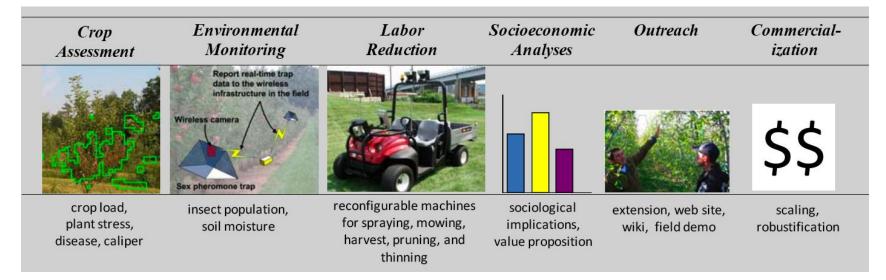

fruit








fruit



People involved

- Project director
 - Sets overall strategy, parallelizes tasks
 - Selects collaborators and negotiates their budget allocation
 - Sets proposal outline and page budgets
 - Has final word on conflicts
- Proposal manager
 - Integrates contributions from team
 - Makes sure all requirements from solicitation are met
- Review ("red") team
 - Not the researchers who write the proposal
 - Performed sufficiently early so comments can be incorporated
- Get university behind project
 - Will need to sign off on match
 - Will need to cooperate on submission

Comprehensive Automation for Specialty Crops

- Four-year project focused on apple and nursery tree industry
- Participants
 - Academia: CMU, Penn State, Washington State, Oregon State, Purdue
 - Industry: Vision Robotics, Toro, Trimble, DBR, Spensa
 - Government: USDA-ARS
 - Farmers, growers, and associations

How CASC was put together

- Started discussions with Penn State/apple growers 9 months before proposal deadline
- Identified movers and shakers in the industry, attracted them
- Started and stayed with a single project lead
- Created an outline of the proposal
- Refused to accept text already written
 - No writing until outline accepted
- Each leader required to articulate (max. three slides)
 - Problem: agnostic to solution (e.g. need to count fruit)
 - Approach: how the problem is solved (e.g. use computer vision)
 - Milestones: concrete results (e.g. build a mobile sensor)
 - Criteria for success: quantitative (e.g. count 95% of visible fruit)

How CASC was put together (cont.)

- Once picture clear, leaders wrote in a structured way with fixed page limits
- Core group of people wrote front end and back end
- Conducted "Red Team" review by others who have written large proposals and run large projects
- Sections turned into statements of work for subcontractors
- Got much help from budget offices at PSU, OSU and WSU

Summary

- Start discussions with industry early
- Land usage has great match potential, but cash contributions are the way to tell if the industry is really serious
- Outline! Don't write until content is clear
- Set metrics (criteria for success) to clarify that your project will be beneficial
- Get experienced people to manage proposal and run project
 - Distinct need for a Proposal/Project Manager at 50% effort for a CAP
- Proposal should read like it was written by a single entity
- Get industry leaders on your advisory panel

Managing a Large SCRI Project

Sanjiv Singh CASC Principal Investigator

Marcel Bergerman CASC Project Manager

Typical Elements of a Large SCRI Project

- Participants have different cultures
 - Work moves at a different pace at each institution
 - Motivation/criteria for success varies
 - Integration between groups is difficult
- Many threads
 - Not all will be successful
- No one person understands all technical details
- Reporting structure is distributed
- Validation comes from a combination of third parties

CASC model

- A federation of research groups
 - Manage results, not methods
- Clear definition of yearly and interim goals
 - Year 1: straight from proposal
 - Years 2-4: reassessed based on prior year's findings
- Regular progress assessment
 - Progress report meetings alternate with showcase meetings
 - Two interim reports per year
 - Annual report—NOT a collation of interim reports
 - Annual in loco visit to all groups
- Clear integration path
 - Semi-annual and yearly field experiments
- Budget for subgroups reviewed yearly
- Cut efforts that fail even after a lot of feedback, without letting them fester
- Look to extension studies and industry consortia to validate problems and success

Roles of the PI and PM

- Principal investigator
 - Set the pace of the project
 - Establish goals
 - Negotiate subcontracts
 - Control budget (macro)
 - Communicate with stakeholders
 - Make final decisions on project-related matters
- Project manager
 - Ensure SOW is being pursued and goals are being met
 - Prepare and issue reports
 - Organize and run meetings
 - Issue and oversee subcontracts
 - Control budget (micro)
 - Consult with USDA on project-related matters

Yearly and interim goals

- Ideally, already in the proposal
- Goals must be
 - relevant (to the client!)
 - challenging
 - realistic/achievable
- Goals must include at a minimum
 - activities (verb)
 - develop system, execute field test, test algorithm, etc.
 - deliverable (substantive)
 - software, hardware, field test, database, report, etc.
 - success criteria (numeral)
 - quantitative measure of success

Example: Reconfigurable Mobility

Activities	Deliverables	Success Criteria			
1. Develop a pared-down, robust, easy to maintain vehicle	1. Autonomous vehicle whose only non-stock modifications support off-board use: sensors for safety and row following and control computers.	1. Less than one hour of maintenance per 10 hours of operation			
2a. Develop a complete user interface for scaffold mode (user on-board vehicle)2b. Develop a simple user interface for pace mode (user not on-board vehicle)	2. Interface and instructions for autonomous vehicles to be usable by non-technical workers	2. 100 km of autonomousAPM operation completed by non-technical personnel(system designers not present)			
 3a. Support Penn State in automating Darwin string thinning system 3b. Collect biological and engineering measurements on autonomous string thinning 	 3a. Blossom removal comparison between control, human-controlled Darwin and autonomous Darwin 3b. Quantified engineering performance, e.g. visible canopy intersected 	3. Autonomous thinner performs as well or better than human operator			

Meeting and reporting schedule

Month	1	2	3	4	5	6	7	8	9	10	11	12
Progress Report/ Showcase Meeting	PRM	SM	PRM	SM	PRM	SM	PRM	SM	PRM	SM	PRM	SM
Advisory Panel Meeting						APM						APM
Interim/Yearly Report				IR				IR				YR

Web-based outreach tools

- Web site: <u>http://www.cascrop.com</u>
- YouTube: <u>http://www.youtube.com/user/TheCASCrop</u>
- Slideshare: <u>http://www.slideshare.net/CASCrop</u>
- Facebook: <u>http://www.facebook.com/cascrop</u>

Challenges

- Maintain communication among all groups
- Share data outside project
- Dealing with an underperforming partner
- Engineering vs. plant science culture

Staying successful

- Motto: "Keep the program sold"
 - Funding is not an entitlement
 - Make your client look good
 - Provide continuous, easy to explain, reliable evidence that you are succeeding
- Who is the client?
 - Industry associations
 - Growers
 - USDA program manager

Thank you.

ssingh@cmu.edu marcel@cmu.edu